
3 Statistics of Extremes slide 67

3.1 Introduction slide 68

Basic ideas

! Section 2.3 described models for extremes in which background data x1, . . . , xmt0 are treated as

a realisation of X1, . . . ,Xmt0
iid
∼ F .

! This is highly idealised, since in applications

– the models are asymptotic, but the data are finite, so there may be bias;

– data are very often not identically distributed, owing to seasonality, trend or dependence on
external factors;

– data are typically dependent, owing to short-term persistence of extreme conditions;

– there may be other complications, e.g., selection of data because they are extreme or missing
data or . . .

! Despite this the extremal paradigm, i.e., fitting asymptotic models to finite-sample data, is
widely used, and is the basis of extremal analysis.
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Minima

! In general discussion we consider maxima and large values — what about minima and small
values?

! As
Y = min(X1, . . . ,Xm) = −max(−X1, . . . ,−Xm) = −Y −,

say, we see that if we apply the arguments of §2.3 to −X, then

G̃(y) ≈ P(Y ≤ y) = P(Y − ≥ −y) ≈ 1−G(−y),

where G is the GEV approximation for max(−X1, . . . ,−Xm). Hence

G̃(y; η̃, τ̃ , ξ̃) = 1−G(−y;−η, τ, ξ),

where G is estimated from the negative minima.
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Estimation

! Mostly we use maximum likelihood estimation according to the recipe on slide 24.

! This has theoretical and practical advantages:

– it is efficient (has the smallest possible variance) in large samples — in regular situations
(more later);

– likelihood ratio tests are generally fairly powerful;

– there’s a simple recipe to follow — write down the likelihood and maximise it — which works
in many situations;

– lots of code already exists and can be readily applied. Hooray!

! Other methods of estimation are also used:

– method of moments estimation to get initial values for maximising a likelihood;

– probability-weighted (or L-) moments estimation is widely used in hydrology and some other
domains, because it can beat ML estimation in small samples;

– in more complex problems the likelihood can be awkward, and then other methods must be
used.
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Moment estimation

! Define moments for random variable X as µ′
r = E(Xr) for r = 1, . . . (if µ′

r finite).

! If X depends on p× 1 parameter vector θ, then µ′
r = µ′

r(θ), and we estimate θ by solving the
equations

µ′
r(θ) = n−1

∑

j

Xr
j , r = 1, . . . , p.

! Moment estimators usually simple but inefficient (variance larger than for competing approaches)

! For GEV, µ′
r exists only if ξr < 1, so must have ξ < 1/3 to estimate all three parameters, and

ξ < 1/6 for them to have finite variances. Much too restrictive for use in practice.

! Useful for finding starting-values for ML estimation.
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L-moment estimation

! Define probability-weighted moments as µ′
r,s,t = E[XrF (X)s{1− F (X)}t] for

r, s, t = 0, 1, 2, . . ., or equivalently

µ′
r,s,t =

∫ 1

0
xrpp

s(1− p)tdp, where F (xp) = p;

ordinary moments have s = t = 0.

! Use βs ≡ µ′
1,s,0 for s = 0, 1, . . . to fit GEV and GPD.

! In practice estimate the L-moments, λ1 = β0, λ2 = 2β1 − β0, . . . , by

λ̂1 =
1(n
1

)
n∑

j=1

X(j), λ̂2 =
1

2
(n
2

)
n∑

j=1

{(
j − 1

1

)
−

(
n− j

1

)}
X(j), . . . ,

! L-moment estimators of η, τ and ξ based on λ̂1, λ̂2 and λ̂3 are linear in the observations, so are
more robust than the ordinary moment estimators.

! Have good small-sample properties, but don’t generalise to complex settings.
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Plan

! Now discuss

– basic models,

– exploratory methods,

– fitting and interpretation and

– model checking

for basic models for maxima and for threshold exceedances.

! Then discuss targets of inference — measures of risk — and practical complications.
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3.2 Basic Methods for Maxima slide 75

Extremal Types Theorem

Theorem 15 (Extremal types) Let M = max(X1, . . . ,Xm) be the maximum of a random sample
X1, . . . ,Xm. If sequences of real numbers {am} > 0 and {bm} can be chosen so that the centred and
scaled sample maximum, Ym = (M − bm)/am, has a non-degenerate limiting distribution G, then this
must be the generalized extreme-value distribution (GEV),

G(y) =

{
exp

[
− {1 + ξ(y − η)/τ}−1/ξ

+

]
, ξ ̸= 0,

exp [− exp {−(y − η)/τ}] , ξ = 0,
y ∈ R, (11)

where a+ = max(a, 0) for any real a, and with ξ, η ∈ R and τ > 0. Put another way, Ym
D
−→ Y ∼ G

as m → ∞, giving the ‘finite-m’ approximation P(Ym ≤ y) ≈ G(y).

! The ‘types’, which arise for ξ = 0, ξ > 0 and ξ < 0, are now usually subsumed into (11), and are
discussed below.

! This theorem provides a single distribution for maxima, and is in some ways stronger than the
Central Limit Theorem, since we only assume that linear rescaling can result in a non-degenerate
distribution, without other assumptions on F .

! This is a natural model for maxima (and minima by using 1−G(−y)).
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Examples

Example 16 Find sequences {am} and {bm} such that maxima of independent variables from the
(a) uniform, (b) exponential, and (c) Pareto distributions have non-degenerate limiting distributions.
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Distributions of maxima (left) and renormalized maxima (right) of m = 1, 7, 30, 365, 3650 standard
exponential variables (from left to right), with limiting Gumbel distribution (heavy).

http://stat.epfl.ch slide 77

40



Note I to Example 16

! Note that
P {(M − bm)/am ≤ y} = P {M ≤ bm + amy} = Fm(bm + amy),

and we need to choose am and bm such that this has a limit as m → ∞. We saw from
Theorem 14 that a limit G(y) = exp{−Λ(y)}, so it is equivalent to identify Λ.

! (a) In the uniform case, F (x) = x for x ∈ [0, 1]. Provided 0 ≤ bm + amy ≤ 1, we therefore have

F (bm + amy)m = (bm + amy)m,

so if we set bm = 1, am = 1/m and −m ≤ y ≤ 0, we have (bm + amy)m → ey. Hence

Λ(y) =

{
−y, y ≤ 0,

0, y > 0,

i.e., Λ(y) = (−y)+. Clearly Λ is decreasing on (−∞, 0). Hence

G(y) = exp{−Λ(y)} =

{
ey, y ≤ 0,

1, y > 0,

which is the distribution function of −W , where W ∼ exp(1). It is straightforward to check that
this G is (11) with η = 1, τ = 1 and ξ = −1.

! (b) In the exponential case, F (x) = 1− exp(−x) for x > 0. Provided bm + amy > 0,

F (bm + amy)m = [1− exp {−(bm + amy)}]m ,

so if we set bm = logm and am = 1, and if y > − logm,

G(y) = lim
m→∞

F (bm + amy)m = lim
m→∞

(
1−

e−y

m

)m

= exp
(
−e−y

)
, y ∈ R,

which is (11) with η = 0, τ = 1 and ξ = 0. Here Λ(y) = e−y with support in R.

! (c) In the Pareto case, F (x) = 1− x−α for x > 1 and α > 0. Provided bm + amy > 1, we have

F (bm + amy)m =
{
1− (bm + amy)−α

}m

so if we set bm = 0 and am = m1/α, and if y > m−1/α, we have

G(y) = lim
m→∞

F (bm + amy)m = lim
m→∞

(
1−

y−α

m

)m

= exp
(
−y−α

)
, y ≥ 0,

which is (11) with η = 1, τ = 1/α and ξ = 1/α. In this case

Λ(y) =

{
∞, y ≤ 0,

y−α, y > 0.

! Note that we have not shown that the three limits above are the only ones possible, just that we
can choose am and bm to obtain these limits.
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GEV and ‘three types’
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! ξ is a shape parameter determining the rate of tail decay, with:

– ξ > 0 giving the heavy-tailed Fréchet (Type II) density with support (η − τ/ξ,∞);

– ξ = 0 giving the light-tailed Gumbel (Type I) density, with support R;

– ξ < 0 giving the short-tailed (reverse) Weibull (Type III) density, with support
(−∞, η − τ/ξ).

! The usual Weibull distribution gives a model for minima.

! η and τ are location and scale parameters (not so crucial as the shape parameter ξ).
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Properties of the GEV

! Support: If ξ > 0 then Y > η − τ/ξ, and if ξ < 0 then Y < η − τ/ξ.

! Moments: E(Y r) exists only if ξ < 1/r, so the mean exists only if ξ < 1, the variance only if
ξ < 1/2, etc. In applications (particularly in finance) some moments may not exist.

! Quantiles: solve G(y) = p for 0 < p < 1, but usually we use the return levels given by solving
G(yp) = 1− p (next slide) — so yp is the (1− p) quantile (careful!)

! Maximum likelihood estimation: is regular only if ξ > −1/2. Not usually a problem in
applications.

! Max-stability: if Y1, . . . , YT
iid
∼ GEV(η, τ, ξ) then max(Y1, . . . , YT ) ∼ GEV(ηT , τT , ξT ), i.e.,

G(y; η, τ, ξ)T = G(y; ηT , τT , ξT )

where

ηT =

{
η + τ(T ξ − 1)/ξ, ξ ̸= 0,

η + τ log T, ξ = 0,
τT = τT ξ, ξT = ξ,

so the distribution type and shape parameter are unchanged by taking maxima.

! In fact the GEV is the only max-stable class of distributions.
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Quantiles and return levels

! Define the return level associated to the return period T = 1/p (blocks) as

yp = η + τ
{− log(1− p)}−ξ − 1

ξ
, 0 < p < 1,

i.e., the solution to G(yp) = 1− p = 1− 1/T .

! Informally, yp is the level expected to be exceeded once every T blocks.

! The plot below compares the quantiles for ξ = −0.2 (blue) and ξ = 0.2 (red) with the Gumbel
quantiles (black).
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Statistical approach

! Assume background data x1, x2, . . . are IID realisations from some continuous distribution F to
which the GEV approximation applies.

! Take maxima y = max(x1, . . . , xm) of blocks of size m from the background data.

– for environmental time series, typically m ≈ 365 for annual maxima, m ≈ 30 for monthly
maxima, . . .

– in finance, typically m = 250 for annual maxima, m = 20 for monthly maxima, . . .

! Suppose the resulting series of maxima y1, . . . , yn are IID GEV(η, τ, ξ).

! Fit the GEV by maximum likelihood estimation and use the fitted model for inferences.
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Exploratory plot for maxima

! Plot ordered block maxima y(1) ≤ · · · ≤ y(n) against Gumbel plotting positions

− log [− log {j/(n + 1)}] , j = 1, . . . , n.

! After allowing for noise,

– convex shape suggests ξ > 0,

– straight line suggests ξ ≈ 0,

– concave shape suggests ξ < 0.

! Outliers, heavy rounding or other issues with data should be visible.

! Comparison of these plots for different block sizes may also suggest a minimum block size for the
GEV to apply.
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Abisko daily rainfall data

! Daily precipitation in Abisko, in northern Sweden, 1913–2014. The largest value is 61.9 mm, but
many values are zero and most of the positive values are quite small.
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Abisko block maxima

! Gumbel QQplot of maxima for blocks of lengths (from bottom) one month and one, two, five and
ten years.
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Abisko annual maxima

! QQplot suggests stability from one year onwards, with slight convexity, so let’s fit the GEV to
annual maxima:

library(evd)

(fit <- fgev(year.max))

Call: fgev(x = year.max)

Deviance: 691.9509

Estimates

loc scale shape

20.40530 5.84596 0.08353

Standard Errors

loc scale shape

0.64854 0.48317 0.07193

Optimization Information

Convergence: successful

Function Evaluations: 27

Gradient Evaluations: 7
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Abisko annual maxima

! Let’s check the fit using plot(fit):
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Commentary

! These (horrible!) plots use the fitted GEV CDF Ĝ ≡ G(·; η̂, τ̂ , ξ̂) and are the

– probability plot showing
{
(j/(n + 1), Ĝ(y(j))) : j = 1, . . . , n

}
, which should be a straight

line of unit gradient if Ĝ is a good fit;

– quantile plot showing
{
(Ĝ−1{j/(n + 1)}, y(j)) : j = 1, . . . , n

}
, which should be a straight

line of unit gradient if Ĝ is a good fit;

– return level plot showing (solid line) (− log(1− p), Ĝ−1(1− p)), for 0 < p < 1, and the
points

{
(− log{j/(n + 1)}, y(j)) : j = 1, . . . , n

}
, which should lie on the line if Ĝ is a good fit;

– density plot showing a kernel density estimate based on y1, . . . , yn (shown by the rug) and
the fitted GEV density.

! Some of the plots have pointwise 95% limits for individual points.

! They show essentially the same information but on different scales to highlight different aspects
of the fit.

! In this case the fit seems reasonable.
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3.3 Basic Methods for Exceedances slide 88

Basic ideas

! Background data x1, . . . , xmt0 comprise t0 blocks each of m observations.

! Model the exceedances over some threshold u by a Poisson process with measure

µ{(t′, t)× [x,∞)} = (t− t′)Λ(x), 0 ≤ t′ < t ≤ t0, x > u,

where

Λ(x) =

(
1 + ξ

x− η

τ

)−1/ξ

+

.

! This implies that the times of exceedances are a Poisson process of rate pu = Λ(u) in (0, t0) and
the exceedance sizes are IID with GP distribution

P(Xj − u ≤ x | Xj > u) = 1− (1 + ξx/σu)
−1/ξ
+ ,

where σu = τ + ξ(u− η).

! This yields two fitting approaches:

– estimate η, τ and ξ directly by fitting the Poisson process likelihood;

– estimate σu and ξ from the exceedances and pu from the number of exceedances, nu.

! The second, peaks over thresholds (POT), approach is most used in practice, as it’s easier to
explain and understand, but both fits are equivalent.
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Exceedance Theorem

Theorem 17 (Exceedance) Let X be a random variable having distribution function F , and
suppose that a function cu can be chosen so that the limiting distribution of (X − u)/cu, conditional
on X > u, is non-degenerate as u approaches the upper support value x∗ = sup{x : F (x) < 1} of X.
If such a limiting distribution exists, it must be of generalized Pareto form, i.e.,

H(x) =

{
1− (1 + ξx/σ)−1/ξ

+ , ξ ̸= 0,

1− exp (−x/σ) , ξ = 0,
x > 0, (12)

where ξ ∈ R and σ > 0. Expression (12) is the generalized Pareto distribution (GPD).

! There is a close connection with the extremal types theorem, which applies for maxima under the
same conditions as the exceedance theorem applies for exceedances, and with the same ξ.

! The GPD is a natural model for exceedances over high thresholds (and under low ones, using
1−H(−x)).

Example 18 Find a limiting distribution for threshold exceedances for Z ∼ N(0, 1). Recall that
1−Φ(z) ∼ φ(z)/z as z → ∞.
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Note to Example 18

! Here x∗ = ∞ and for large z we have 1− Φ(z) ∼ φ(z)/z.

! By analogy with renormalising maxima we aim to find a function cu > 0 such that

lim
u→∞

P{(Z − u)/cu > x | Z > u}

is non-degenerate. The hint gives that for fixed x > 0 and large u,

P{(Z − u)/cu > x | Z > u} =
P(Z > u+ cux)

P(Z > u)

=
1− Φ(u+ cux)

1− Φ(u)

∼
φ(u+ cux)/(u+ cux)

φ(u)/u

=
u

u+ cux
exp{u2/2− (u+ cux)

2/2}

=
1

1 + cux/u
exp(−cuux− c2ux

2/2),

so if we choose cu = 1/u then the ratio tends to unity and the exponent tends to −x, i.e., the
limiting distribution for an appropriately rescaled exceedance is standard uniform.

! If we had chosen cu = 1/(σu) for any fixed σ > 0 we would have an exponential limit, with mean
σ, as in (12), so we can think of the parameter σ as arising because we don’t know the ideal
scaling function.
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Generalized Pareto distribution
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! A flexible distribution whose density can take a variety of shapes.

! Left: exponential density (ξ = 0, black), heavy-tailed density (ξ = 0.5, red) and light-tailed
density (ξ = −0.2, blue, with upper terminal shown); all have σ = 1.

! Right: densities with negative shape parameter and upper terminal at x = 1, with ξ = −1
(black), ξ = −2 (red), ξ = −0.5 (blue) and ξ = −0.8 (green).
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Stability and threshold choice

! Both approaches require a threshold u to be chosen. Note that

– the Poisson process parameters should be stable above an appropriate threshold u,

– u too low will lead to bias (model inappropriate) and u too high will increase variance (too
few exceedances).

! If the Poisson process model is stable above umin, then estimates of η, τ and ξ should be similar
for u > umin, but will become more variable for higher u.

! If X ∼ GPD(σ, ξ), then X − u | X > u ∼ GPD(σ + ξu, ξ), and this implies that

E(X − u | X > u) =
σ + ξu

1− ξ
, ξ < 1,

so a mean excess plot (or mean residual life plot) of

∑
j(xj − u)I(xj > u)
∑

j I(xj > u)
against u,

should be approximately straight with slope ξ/(1− ξ) above umin.

! Can also test for equal shape parameters above u (Northrop–Coleman test).
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Abisko threshold analysis

! All panels suggest that umin is reasonable.
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Exploratory plot

! The natural plot here is of ordered exceedances against exponential plotting positions:
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GPD fit

(fit.gpd <- fpot(abisko$precip,threshold=10))

Deviance: 2828.05

Threshold: 10

Number Above: 499

Proportion Above: 0.033

Estimates

scale shape

5.83261 0.07025

Standard Errors

scale shape

0.39483 0.05088

Optimization Information

Convergence: successful

Function Evaluations: 16

Gradient Evaluations: 6
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Abisko POT fit

! Let’s check the fit using plot(fit.gpd):
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Poisson process fit

(fit.pp <- fpot(abisko$precip, threshold=10, model="pp", npp=365.25,

start=list(loc=20,scale=6.5,shape=0.01)))

# needs initial values and number of points/block

Deviance: 2241.606

Threshold: 10

Number Above: 499

Proportion Above: 0.0134

Estimates

loc scale shape

19.79658 6.52110 0.07026

Standard Errors

loc scale shape

0.55597 0.37895 0.05088

Optimization Information

Convergence: successful

Function Evaluations: 20 ... Gradient Evaluations: 8
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Abisko Poisson process fit

! Let’s check the fit using plot(fit.pp):
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Summary

! The three fits agree fairly well:

– Maxima: η̂ = 20.40.649, τ̂ = 5.840.483, ξ̂ = 0.080.072;

– Poisson process: η̂ = 19.80.556, τ̂ = 6.520.379, ξ̂ = 0.070.051;

– POT: p̂u = 0.033, σ̂u = 5.830.394, ξ̂ = 0.070.051.

! The location and scale parameters are estimated quite well, but the shape much less well.

! The shape parameter estimate is slightly positive, but not significantly so (some hydrologists
claim that rainfall has ξ ≈ 0.1 . . . ).

! The fit appears to be good.

! In applications one would need to check that the threshold fits are robust to the choice of u
(above umin).

! It is tempting to fit the model with ξ = 0, which will give much smaller standard errors for the
other parameters. But as we do not know that ξ = 0, this reduction in uncertainty may be
unrealistic, and it may introduce bias in extrapolation.
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3.4 Targets of Inference slide 100

Return levels and return periods

! In basic analyses, typically aim to estimate risk measures such as

P(X > x), xp = F−1
X (1− p),

where X is a background observation and x and xp are larger than any data,

– e.g., legal requirement for nuclear installations to estimate the highest windspeed in T = 107

years, so if there are daily data, then p = 1/(365.25T ).

! xp is a T -year return level with a return period of 1/p observations or T years.

! The return level solves the equation

FNp(xp) = 1− p,

where Np is the number of background observations in the return period.
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Return levels and return periods II

! Solving
FNp(xp) = 1− p

for the POT model gives

xp = u+
σu
ξ

⎡

⎣
{
1− (1− p)1/Np

pu

}−ξ

− 1

⎤

⎦ , xp > u, (13)

where pu is the probability that a single background observation exceeds u.

! The GEV applies to maxima of blocks of m background observations, so we effectively take

1− p = GNp/m(xp), (14)

which yields

xp = µ+
σ

ξ

[
{−m log(1− p)/Np}

−ξ − 1
]
. (15)

! Both formulae are replaced by their limits as ξ → 0 for the Gumbel or exponential fits.

! Point estimates of both are obtained by using the fitted parameter values.
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Profile log-likelihood

! Here ψ is the 100-year return value for daily precipitation at Abisko based on the GEV fit.

! The strong asymmetry means that symmetric confidence intervals could be very misleading.
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Return levels and return periods III

! In hydrology, an intensity-duration-frequency (IDF) curve describes the relationship between
rainfall intensity, duration, and a given return period and is used for flood risk assessment and
water management.

! For each duration D, the frequency and magnitude of extreme rainfall events are estimated.

! Relying on the GEV applied to the series of annual maxima, estimates of xp, the T -year return
level, are produced. For comparison purposes, we work with I = xp/D.

! The Gumbel distribution is usually used for convenience but more general approaches have
recently been proposed.

IDF curves for Montréal airport. Source: Environment and Climate Change Canada (ECCC)
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Other measures of risk

! In environmental applications it may be important to estimate amounts of rain falling into an
entire catchment area, or the length and impact of a heatwave, or . . .

! The Basel Accords regulate measures of risk to be used by financial institutions:

– the Value at Risk VaRp is another name for a quantile/return level xp;

– the Expected Shortfall is defined as the expected loss conditional on VaRp being exceeded,

E(X − VaRp | X > VaRp),

where in both cases X represents a potential loss.

– More sophisticated measures such as expectiles are also used.
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Comments

! The T -year return level is often called ‘the level exceeded once on average every T years’, and is
easily misinterpreted:

– ‘on average’ does not mean that disasters arise at regular T -year intervals!

– selection is often discounted — if M independent time series are monitored, then we expect
M/T T -year events each year;

– the assumption of stationarity is rarely true, so large events may cluster together in periods of
elevated risk.

! Preferable to refer to quantiles — but probably impossible to change a cultural icon!

! Return levels and return periods are parameters of distributions, but future events are as-yet
unobserved random variables, and it may be useful to consider their distributions. The distribution
of the largest value XT to be observed over T blocks of future background observations is GT (y),
and it may be better to use this for risk analysis, in a Bayesian approach (later, probably).
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