

3.1 Introduction

Basic ideas

- Section 2.3 described models for extremes in which **background data** x_1, \dots, x_{mt_0} are treated as a realisation of $X_1, \dots, X_{mt_0} \stackrel{\text{iid}}{\sim} F$.
- This is highly idealised, since in applications
 - the models are asymptotic, but the data are finite, so there may be bias;
 - data are very often not identically distributed, owing to seasonality, trend or dependence on external factors;
 - data are typically dependent, owing to short-term persistence of extreme conditions;
 - there may be other complications, e.g., selection of data because they are extreme or missing data or ...
- Despite this the **extremal paradigm**, i.e., fitting asymptotic models to finite-sample data, is widely used, and is the basis of extremal analysis.

Minima

- In general discussion we consider maxima and large values — what about minima and small values?
- As

$$Y = \min(X_1, \dots, X_m) = -\max(-X_1, \dots, -X_m) = -Y^-,$$

say, we see that if we apply the arguments of §2.3 to $-X$, then

$$\tilde{G}(y) \approx P(Y \leq y) = P(Y^- \geq -y) \approx 1 - G(-y),$$

where G is the GEV approximation for $\max(-X_1, \dots, -X_m)$. Hence

$$\tilde{G}(y; \tilde{\eta}, \tilde{\tau}, \tilde{\xi}) = 1 - G(-y; -\eta, \tau, \xi),$$

where G is estimated from the negative minima.

Estimation

- Mostly we use maximum likelihood estimation according to the recipe on slide 24.
- This has theoretical and practical advantages:
 - it is efficient (has the smallest possible variance) in large samples — in regular situations (more later);
 - likelihood ratio tests are generally fairly powerful;
 - there's a simple recipe to follow — write down the likelihood and maximise it — which works in many situations;
 - lots of code already exists and can be readily applied. Hooray!
- Other methods of estimation are also used:
 - method of moments estimation to get initial values for maximising a likelihood;
 - probability-weighted (or L -) moments estimation is widely used in hydrology and some other domains, because it can beat ML estimation in small samples;
 - in more complex problems the likelihood can be awkward, and then other methods must be used.

<http://stat.epfl.ch>

slide 71

Moment estimation

- Define moments for random variable X as $\mu'_r = E(X^r)$ for $r = 1, \dots$ (if μ'_r finite).
- If X depends on $p \times 1$ parameter vector θ , then $\mu'_r = \mu'_r(\theta)$, and we estimate θ by solving the equations
$$\mu'_r(\theta) = n^{-1} \sum_j X_j^r, \quad r = 1, \dots, p.$$
- Moment estimators usually simple but inefficient (variance larger than for competing approaches)
- For GEV, μ'_r exists only if $\xi r < 1$, so must have $\xi < 1/3$ to estimate all three parameters, and $\xi < 1/6$ for them to have finite variances. Much too restrictive for use in practice.
- Useful for finding starting-values for ML estimation.

<http://stat.epfl.ch>

slide 72

L-moment estimation

- Define **probability-weighted moments** as $\mu'_{r,s,t} = E[X^r F(X)^s \{1 - F(X)\}^t]$ for $r, s, t = 0, 1, 2, \dots$, or equivalently

$$\mu'_{r,s,t} = \int_0^1 x_p^r p^s (1-p)^t dp, \quad \text{where } F(x_p) = p;$$

ordinary moments have $s = t = 0$.

- Use $\beta_s \equiv \mu'_{1,s,0}$ for $s = 0, 1, \dots$ to fit GEV and GPD.
- In practice estimate the **L-moments**, $\lambda_1 = \beta_0$, $\lambda_2 = 2\beta_1 - \beta_0, \dots$, by

$$\hat{\lambda}_1 = \frac{1}{\binom{n}{1}} \sum_{j=1}^n X_{(j)}, \quad \hat{\lambda}_2 = \frac{1}{2\binom{n}{2}} \sum_{j=1}^n \left\{ \binom{j-1}{1} - \binom{n-j}{1} \right\} X_{(j)}, \quad \dots,$$

- L-moment estimators of η , τ and ξ based on $\hat{\lambda}_1$, $\hat{\lambda}_2$ and $\hat{\lambda}_3$ are linear in the observations, so are more robust than the ordinary moment estimators.
- Have good small-sample properties, but don't generalise to complex settings.

<http://stat.epfl.ch>

slide 73

Plan

- Now discuss
 - basic models,
 - exploratory methods,
 - fitting and interpretation and
 - model checkingfor basic models for maxima and for threshold exceedances.
- Then discuss targets of inference — measures of risk — and practical complications.

<http://stat.epfl.ch>

slide 74

Extremal Types Theorem

Theorem 15 (Extremal types) Let $M = \max(X_1, \dots, X_m)$ be the maximum of a random sample X_1, \dots, X_m . If sequences of real numbers $\{a_m\} > 0$ and $\{b_m\}$ can be chosen so that the centred and scaled sample maximum, $Y_m = (M - b_m)/a_m$, has a non-degenerate limiting distribution G , then this must be the generalized extreme-value distribution (GEV),

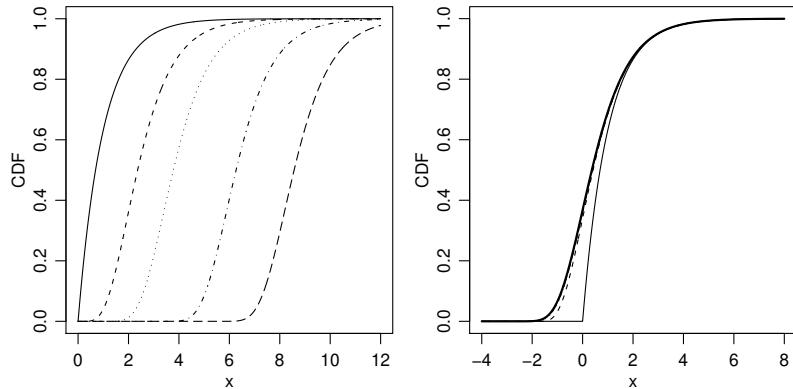
$$G(y) = \begin{cases} \exp \left[-\{1 + \xi(y - \eta)/\tau\}_+^{-1/\xi} \right], & \xi \neq 0, \\ \exp \left[-\exp \{-(y - \eta)/\tau\} \right], & \xi = 0, \end{cases} \quad y \in \mathbb{R}, \quad (11)$$

where $a_+ = \max(a, 0)$ for any real a , and with $\xi, \eta \in \mathbb{R}$ and $\tau > 0$. Put another way, $Y_m \xrightarrow{D} Y \sim G$ as $m \rightarrow \infty$, giving the 'finite- m ' approximation $P(Y_m \leq y) \approx G(y)$.

- The 'types', which arise for $\xi = 0$, $\xi > 0$ and $\xi < 0$, are now usually subsumed into (11), and are discussed below.
- This theorem provides a single distribution for maxima, and is in some ways stronger than the Central Limit Theorem, since we only assume that linear rescaling can result in a non-degenerate distribution, without other assumptions on F .
- This is a natural model for maxima (and minima by using $1 - G(-y)$).

Examples

Example 16 Find sequences $\{a_m\}$ and $\{b_m\}$ such that maxima of independent variables from the (a) uniform, (b) exponential, and (c) Pareto distributions have non-degenerate limiting distributions.



Distributions of maxima (left) and renormalized maxima (right) of $m = 1, 7, 30, 365, 3650$ standard exponential variables (from left to right), with limiting Gumbel distribution (heavy).

Note I to Example 16

□ Note that

$$P\{(M - b_m)/a_m \leq y\} = P\{M \leq b_m + a_m y\} = F^m(b_m + a_m y),$$

and we need to choose a_m and b_m such that this has a limit as $m \rightarrow \infty$. We saw from Theorem 14 that a limit $G(y) = \exp\{-\Lambda(y)\}$, so it is equivalent to identify Λ .

□ (a) In the uniform case, $F(x) = x$ for $x \in [0, 1]$. Provided $0 \leq b_m + a_m y \leq 1$, we therefore have

$$F(b_m + a_m y)^m = (b_m + a_m y)^m,$$

so if we set $b_m = 1$, $a_m = 1/m$ and $-m \leq y \leq 0$, we have $(b_m + a_m y)^m \rightarrow e^y$. Hence

$$\Lambda(y) = \begin{cases} -y, & y \leq 0, \\ 0, & y > 0, \end{cases}$$

i.e., $\Lambda(y) = (-y)_+$. Clearly Λ is decreasing on $(-\infty, 0)$. Hence

$$G(y) = \exp\{-\Lambda(y)\} = \begin{cases} e^y, & y \leq 0, \\ 1, & y > 0, \end{cases}$$

which is the distribution function of $-W$, where $W \sim \exp(1)$. It is straightforward to check that this G is (11) with $\eta = 1$, $\tau = 1$ and $\xi = -1$.

□ (b) In the exponential case, $F(x) = 1 - \exp(-x)$ for $x > 0$. Provided $b_m + a_m y > 0$,

$$F(b_m + a_m y)^m = [1 - \exp\{-(b_m + a_m y)\}]^m,$$

so if we set $b_m = \log m$ and $a_m = 1$, and if $y > -\log m$,

$$G(y) = \lim_{m \rightarrow \infty} F(b_m + a_m y)^m = \lim_{m \rightarrow \infty} \left(1 - \frac{e^{-y}}{m}\right)^m = \exp(-e^{-y}), \quad y \in \mathbb{R},$$

which is (11) with $\eta = 0$, $\tau = 1$ and $\xi = 0$. Here $\Lambda(y) = e^{-y}$ with support in \mathbb{R} .

□ (c) In the Pareto case, $F(x) = 1 - x^{-\alpha}$ for $x > 1$ and $\alpha > 0$. Provided $b_m + a_m y > 1$, we have

$$F(b_m + a_m y)^m = \{1 - (b_m + a_m y)^{-\alpha}\}^m$$

so if we set $b_m = 0$ and $a_m = m^{1/\alpha}$, and if $y > m^{-1/\alpha}$, we have

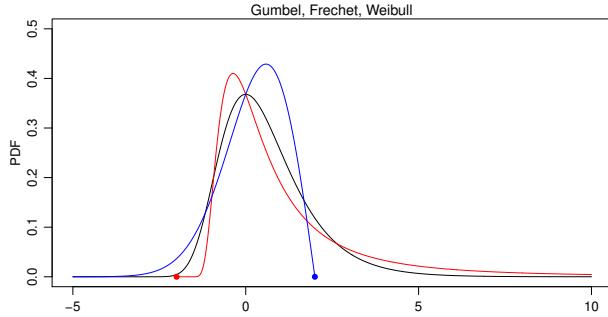
$$G(y) = \lim_{m \rightarrow \infty} F(b_m + a_m y)^m = \lim_{m \rightarrow \infty} \left(1 - \frac{y^{-\alpha}}{m}\right)^m = \exp(-y^{-\alpha}), \quad y \geq 0,$$

which is (11) with $\eta = 1$, $\tau = 1/\alpha$ and $\xi = 1/\alpha$. In this case

$$\Lambda(y) = \begin{cases} \infty, & y \leq 0, \\ y^{-\alpha}, & y > 0. \end{cases}$$

□ Note that we have not shown that the three limits above are the only ones possible, just that we can choose a_m and b_m to obtain these limits.

GEV and 'three types'



- ξ is a shape parameter determining the rate of tail decay, with:
 - $\xi > 0$ giving the heavy-tailed **Fréchet (Type II)** density with support $(\eta - \tau/\xi, \infty)$;
 - $\xi = 0$ giving the light-tailed **Gumbel (Type I)** density, with support \mathbb{R} ;
 - $\xi < 0$ giving the short-tailed **(reverse) Weibull (Type III)** density, with support $(-\infty, \eta - \tau/\xi)$.
- The usual Weibull distribution gives a model for minima.
- η and τ are location and scale parameters (not so crucial as the shape parameter ξ).

<http://stat.epfl.ch>

slide 78

Properties of the GEV

- **Support:** If $\xi > 0$ then $Y > \eta - \tau/\xi$, and if $\xi < 0$ then $Y < \eta - \tau/\xi$.
- **Moments:** $E(Y^r)$ exists only if $\xi < 1/r$, so the mean exists only if $\xi < 1$, the variance only if $\xi < 1/2$, etc. In applications (particularly in finance) some moments may not exist.
- **Quantiles:** solve $G(y) = p$ for $0 < p < 1$, but usually we use the **return levels** given by solving $G(y_p) = 1 - p$ (next slide) — so y_p is the $(1 - p)$ quantile (careful!)
- **Maximum likelihood estimation:** is regular only if $\xi > -1/2$. Not usually a problem in applications.
- **Max-stability:** if $Y_1, \dots, Y_T \stackrel{\text{iid}}{\sim} \text{GEV}(\eta, \tau, \xi)$ then $\max(Y_1, \dots, Y_T) \sim \text{GEV}(\eta_T, \tau_T, \xi_T)$, i.e.,

$$G(y; \eta, \tau, \xi)^T = G(y; \eta_T, \tau_T, \xi_T)$$

where

$$\eta_T = \begin{cases} \eta + \tau(T^\xi - 1)/\xi, & \xi \neq 0, \\ \eta + \tau \log T, & \xi = 0, \end{cases} \quad \tau_T = \tau T^\xi, \quad \xi_T = \xi,$$

so the distribution type and shape parameter are unchanged by taking maxima.

- In fact the GEV is the only max-stable class of distributions.

<http://stat.epfl.ch>

slide 79

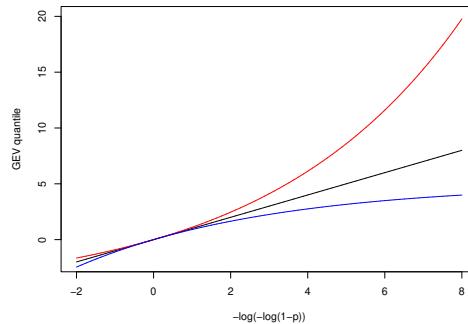
Quantiles and return levels

- Define the **return level** associated to the **return period** $T = 1/p$ (blocks) as

$$y_p = \eta + \tau \frac{\{-\log(1-p)\}^{-\xi} - 1}{\xi}, \quad 0 < p < 1,$$

i.e., the solution to $G(y_p) = 1 - p = 1 - 1/T$.

- Informally, y_p is the level expected to be exceeded once every T blocks.
- The plot below compares the quantiles for $\xi = -0.2$ (blue) and $\xi = 0.2$ (red) with the Gumbel quantiles (black).



Statistical approach

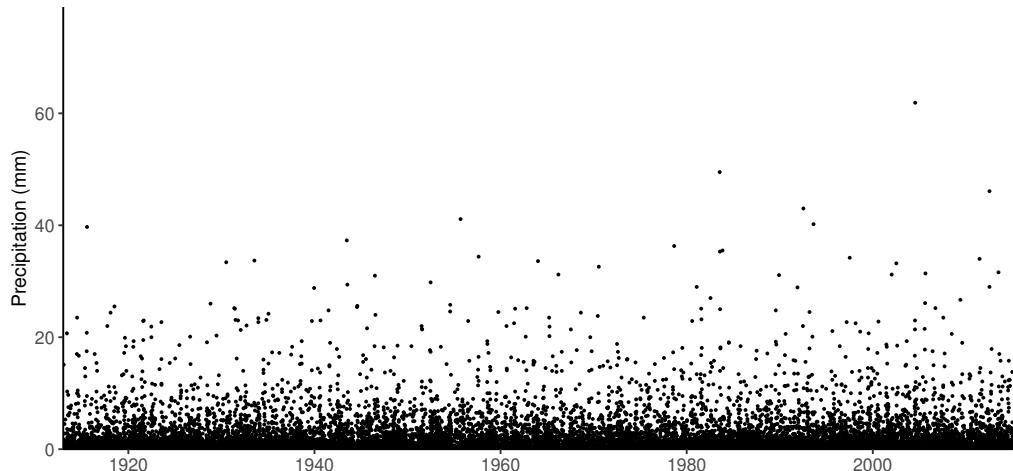
- Assume background data x_1, x_2, \dots are IID realisations from some continuous distribution F to which the GEV approximation applies.
- Take maxima $y = \max(x_1, \dots, x_m)$ of blocks of size m from the background data.
 - for environmental time series, typically $m \approx 365$ for annual maxima, $m \approx 30$ for monthly maxima, ...
 - in finance, typically $m = 250$ for annual maxima, $m = 20$ for monthly maxima, ...
- Suppose the resulting series of maxima y_1, \dots, y_n are IID $\text{GEV}(\eta, \tau, \xi)$.
- Fit the GEV by maximum likelihood estimation and use the fitted model for inferences.

Exploratory plot for maxima

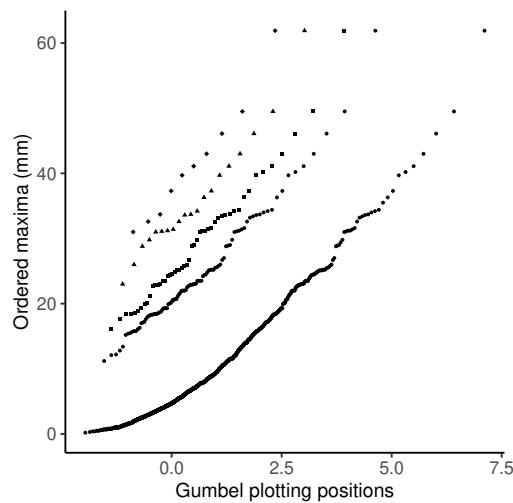
- Plot ordered block maxima $y_{(1)} \leq \dots \leq y_{(n)}$ against Gumbel plotting positions
 - $-\log[-\log\{j/(n+1)\}]$, $j = 1, \dots, n$.
- After allowing for noise,
 - convex shape suggests $\xi > 0$,
 - straight line suggests $\xi \approx 0$,
 - concave shape suggests $\xi < 0$.
- Outliers, heavy rounding or other issues with data should be visible.
- Comparison of these plots for different block sizes may also suggest a minimum block size for the GEV to apply.

Abisko daily rainfall data

- Daily precipitation in Abisko, in northern Sweden, 1913–2014. The largest value is 61.9 mm, but many values are zero and most of the positive values are quite small.

**Abisko block maxima**

- Gumbel QQplot of maxima for blocks of lengths (from bottom) one month and one, two, five and ten years.



Abisko annual maxima

- QQplot suggests stability from one year onwards, with slight convexity, so let's fit the GEV to annual maxima:

```
library(evd)
(fit <- fgev(year.max))
```

```
Call: fgev(x = year.max)
Deviance: 691.9509
```

Estimates

loc	scale	shape
20.40530	5.84596	0.08353

Standard Errors

loc	scale	shape
0.64854	0.48317	0.07193

Optimization Information

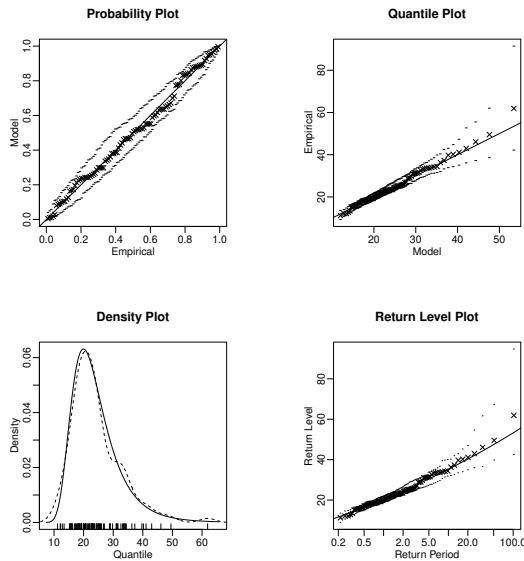
Convergence: successful
Function Evaluations: 27
Gradient Evaluations: 7

<http://stat.epfl.ch>

slide 85

Abisko annual maxima

- Let's check the fit using `plot(fit)`:



<http://stat.epfl.ch>

slide 86

Commentary

- These (horrible!) plots use the fitted GEV CDF $\hat{G} \equiv G(\cdot; \hat{\eta}, \hat{\tau}, \hat{\xi})$ and are the
 - **probability plot** showing $\{(j/(n+1), \hat{G}(y_{(j)})) : j = 1, \dots, n\}$, which should be a straight line of unit gradient if \hat{G} is a good fit;
 - **quantile plot** showing $\{(\hat{G}^{-1}\{j/(n+1)\}, y_{(j)}) : j = 1, \dots, n\}$, which should be a straight line of unit gradient if \hat{G} is a good fit;
 - **return level plot** showing (solid line) $(-\log(1-p), \hat{G}^{-1}(1-p))$, for $0 < p < 1$, and the points $\{(-\log\{j/(n+1)\}, y_{(j)}) : j = 1, \dots, n\}$, which should lie on the line if \hat{G} is a good fit;
 - **density plot** showing a kernel density estimate based on y_1, \dots, y_n (shown by the rug) and the fitted GEV density.
- Some of the plots have pointwise 95% limits for individual points.
- They show essentially the same information but on different scales to highlight different aspects of the fit.
- In this case the fit seems reasonable.

<http://stat.epfl.ch>

slide 87

3.3 Basic Methods for Exceedances

slide 88

Basic ideas

- Background data x_1, \dots, x_{mt_0} comprise t_0 blocks each of m observations.
- Model the exceedances over some threshold u by a Poisson process with measure

$$\mu\{(t', t) \times [x, \infty)\} = (t - t')\Lambda(x), \quad 0 \leq t' < t \leq t_0, \quad x > u,$$

where

$$\Lambda(x) = \left(1 + \xi \frac{x - \eta}{\tau}\right)_+^{-1/\xi}.$$

- This implies that the times of exceedances are a Poisson process of rate $p_u = \Lambda(u)$ in $(0, t_0)$ and the exceedance sizes are IID with GP distribution

$$P(X_j - u \leq x \mid X_j > u) = 1 - (1 + \xi x / \sigma_u)_+^{-1/\xi},$$

where $\sigma_u = \tau + \xi(u - \eta)$.

- This yields two fitting approaches:
 - estimate η , τ and ξ directly by fitting the Poisson process likelihood;
 - estimate σ_u and ξ from the exceedances and p_u from the number of exceedances, n_u .
- The second, **peaks over thresholds (POT)**, approach is most used in practice, as it's easier to explain and understand, but both fits are equivalent.

<http://stat.epfl.ch>

slide 89

Exceedance Theorem

Theorem 17 (Exceedance) Let X be a random variable having distribution function F , and suppose that a function c_u can be chosen so that the limiting distribution of $(X - u)/c_u$, conditional on $X > u$, is non-degenerate as u approaches the upper support value $x^* = \sup\{x : F(x) < 1\}$ of X . If such a limiting distribution exists, it must be of generalized Pareto form, i.e.,

$$H(x) = \begin{cases} 1 - (1 + \xi x/\sigma)_+^{-1/\xi}, & \xi \neq 0, \\ 1 - \exp(-x/\sigma), & \xi = 0, \end{cases} \quad x > 0, \quad (12)$$

where $\xi \in \mathbb{R}$ and $\sigma > 0$. Expression (12) is the **generalized Pareto distribution (GPD)**.

- There is a close connection with the extremal types theorem, which applies for maxima under the same conditions as the exceedance theorem applies for exceedances, and with the same ξ .
- The GPD is a natural model for exceedances over high thresholds (and under low ones, using $1 - H(-x)$).

Example 18 Find a limiting distribution for threshold exceedances for $Z \sim N(0, 1)$. Recall that $1 - \Phi(z) \sim \phi(z)/z$ as $z \rightarrow \infty$.

Note to Example 18

- Here $x^* = \infty$ and for large z we have $1 - \Phi(z) \sim \phi(z)/z$.
- By analogy with renormalising maxima we aim to find a function $c_u > 0$ such that

$$\lim_{u \rightarrow \infty} P\{(Z - u)/c_u > x \mid Z > u\}$$

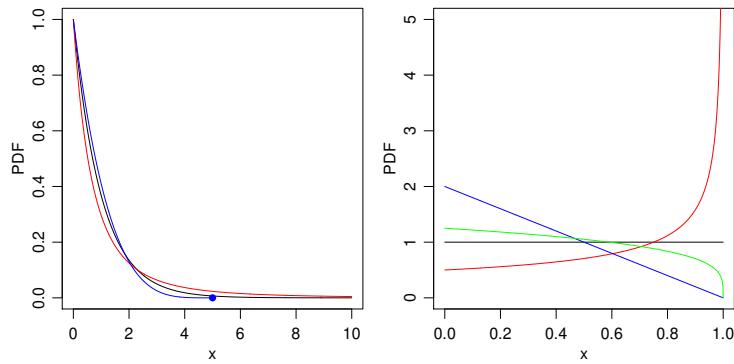
is non-degenerate. The hint gives that for fixed $x > 0$ and large u ,

$$\begin{aligned} P\{(Z - u)/c_u > x \mid Z > u\} &= \frac{P(Z > u + c_u x)}{P(Z > u)} \\ &= \frac{1 - \Phi(u + c_u x)}{1 - \Phi(u)} \\ &\sim \frac{\phi(u + c_u x)/(u + c_u x)}{\phi(u)/u} \\ &= \frac{u}{u + c_u x} \exp\{u^2/2 - (u + c_u x)^2/2\} \\ &= \frac{1}{1 + c_u x/u} \exp(-c_u u x - c_u^2 x^2/2), \end{aligned}$$

so if we choose $c_u = 1/u$ then the ratio tends to unity and the exponent tends to $-x$, i.e., the limiting distribution for an appropriately rescaled exceedance is standard uniform.

- If we had chosen $c_u = 1/(\sigma u)$ for any fixed $\sigma > 0$ we would have an exponential limit, with mean σ , as in (12), so we can think of the parameter σ as arising because we don't know the ideal scaling function.

Generalized Pareto distribution



- A flexible distribution whose density can take a variety of shapes.
- Left: exponential density ($\xi = 0$, black), heavy-tailed density ($\xi = 0.5$, red) and light-tailed density ($\xi = -0.2$, blue, with upper terminal shown); all have $\sigma = 1$.
- Right: densities with negative shape parameter and upper terminal at $x = 1$, with $\xi = -1$ (black), $\xi = -2$ (red), $\xi = -0.5$ (blue) and $\xi = -0.8$ (green).

Stability and threshold choice

- Both approaches require a threshold u to be chosen. Note that
 - the Poisson process parameters should be **stable** above an appropriate threshold u ,
 - u too low will lead to bias (model inappropriate) and u too high will increase variance (too few exceedances).
- If the Poisson process model is stable above u_{\min} , then estimates of η , τ and ξ should be similar for $u > u_{\min}$, but will become more variable for higher u .
- If $X \sim \text{GPD}(\sigma, \xi)$, then $X - u \mid X > u \sim \text{GPD}(\sigma + \xi u, \xi)$, and this implies that

$$E(X - u \mid X > u) = \frac{\sigma + \xi u}{1 - \xi}, \quad \xi < 1,$$

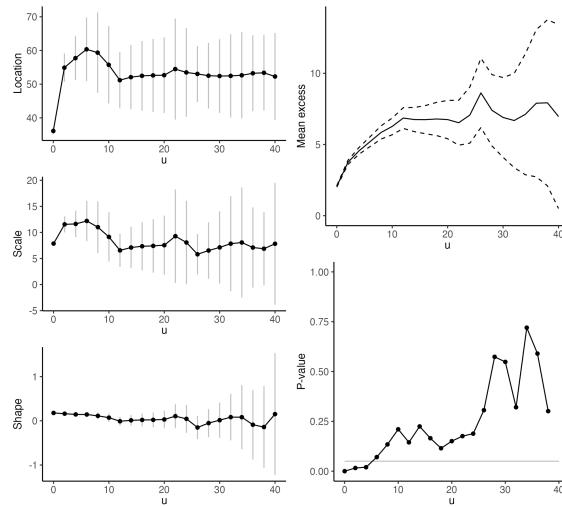
so a **mean excess plot (or mean residual life plot)** of

$$\frac{\sum_j (x_j - u) I(x_j > u)}{\sum_j I(x_j > u)} \quad \text{against} \quad u,$$

should be approximately straight with slope $\xi/(1 - \xi)$ above u_{\min} .

- Can also test for equal shape parameters above u (Northrop–Coleman test).

Abisko threshold analysis



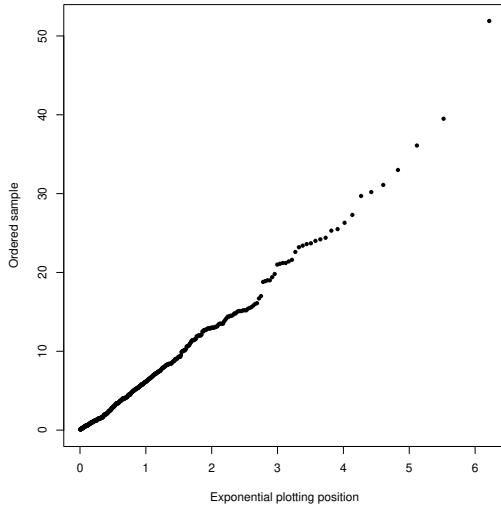
- All panels suggest that u_{\min} is reasonable.

<http://stat.epfl.ch>

slide 93

Exploratory plot

- The natural plot here is of ordered exceedances against exponential plotting positions:



<http://stat.epfl.ch>

slide 94

GPD fit

```
(fit.gpd <- fpot(abisko$precip, threshold=10))
```

Deviance: 2828.05

Threshold: 10

Number Above: 499

Proportion Above: 0.033

Estimates

scale	shape
5.83261	0.07025

Standard Errors

scale	shape
0.39483	0.05088

Optimization Information

Convergence: successful

Function Evaluations: 16

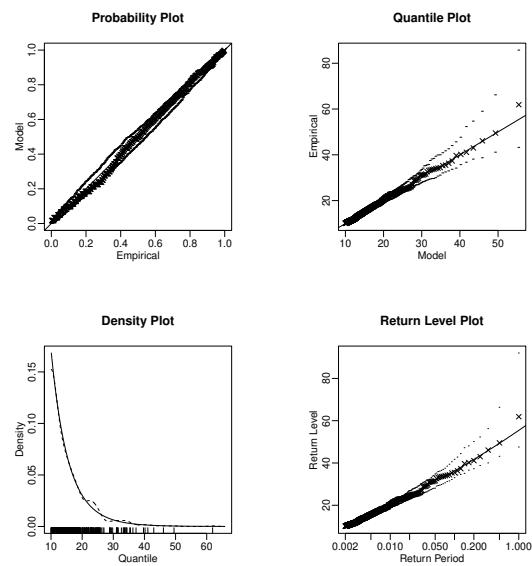
Gradient Evaluations: 6

<http://stat.epfl.ch>

slide 95

Abisko POT fit

- Let's check the fit using `plot(fit.gpd)`:



<http://stat.epfl.ch>

slide 96

Poisson process fit

```
(fit.pp <- fpot(abisko$precip, threshold=10, model="pp", npp=365.25,
  start=list(loc=20,scale=6.5,shape=0.01)))
# needs initial values and number of points/block

Deviance: 2241.606

Threshold: 10
Number Above: 499
Proportion Above: 0.0134

Estimates
  loc      scale      shape
19.79658   6.52110   0.07026

Standard Errors
  loc      scale      shape
0.55597   0.37895   0.05088

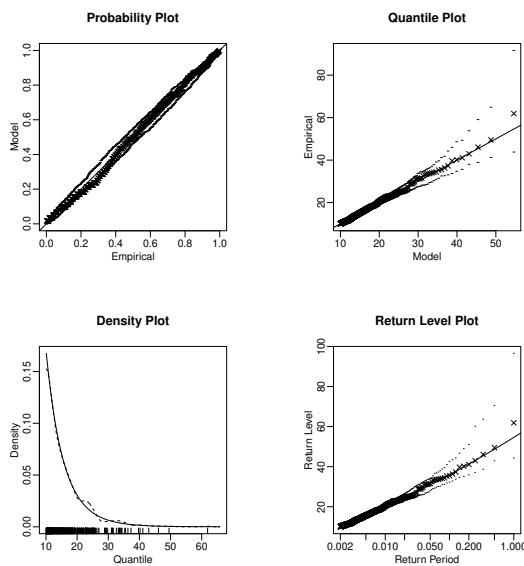
Optimization Information
  Convergence: successful
  Function Evaluations: 20 ... Gradient Evaluations: 8
```

<http://stat.epfl.ch>

slide 97

Abisko Poisson process fit

- Let's check the fit using `plot(fit.pp)`:



<http://stat.epfl.ch>

slide 98

Summary

- The three fits agree fairly well:
 - Maxima: $\hat{\eta} = 20.4_{0.649}$, $\hat{\tau} = 5.84_{0.483}$, $\hat{\xi} = 0.08_{0.072}$;
 - Poisson process: $\hat{\eta} = 19.8_{0.556}$, $\hat{\tau} = 6.52_{0.379}$, $\hat{\xi} = 0.07_{0.051}$;
 - POT: $\hat{p}_u = 0.033$, $\hat{\sigma}_u = 5.83_{0.394}$, $\hat{\xi} = 0.07_{0.051}$.
- The location and scale parameters are estimated quite well, but the shape much less well.
- The shape parameter estimate is slightly positive, but not significantly so (some hydrologists claim that rainfall has $\xi \approx 0.1 \dots$).
- The fit appears to be good.
- In applications one would need to check that the threshold fits are robust to the choice of u (above u_{\min}).
- It is tempting to fit the model with $\xi = 0$, which will give much smaller standard errors for the other parameters. But as we do not know that $\xi = 0$, this reduction in uncertainty may be unrealistic, and it may introduce bias in extrapolation.

<http://stat.epfl.ch>

slide 99

3.4 Targets of Inference

slide 100

Return levels and return periods

- In basic analyses, typically aim to estimate risk measures such as

$$P(X > x), \quad x_p = F_X^{-1}(1 - p),$$

where X is a background observation and x and x_p are larger than any data,

- e.g., legal requirement for nuclear installations to estimate the highest windspeed in $T = 10^7$ years, so if there are daily data, then $p = 1/(365.25T)$.

- x_p is a **T -year return level** with a **return period** of $1/p$ observations or T years.
- The return level solves the equation

$$F^{N_p}(x_p) = 1 - p,$$

where N_p is the number of background observations in the return period.

<http://stat.epfl.ch>

slide 101

Return levels and return periods II

- Solving

$$F^{N_p}(x_p) = 1 - p$$

for the POT model gives

$$x_p = u + \frac{\sigma_u}{\xi} \left[\left\{ \frac{1 - (1 - p)^{1/N_p}}{p_u} \right\}^{-\xi} - 1 \right], \quad x_p > u, \quad (13)$$

where p_u is the probability that a single background observation exceeds u .

- The GEV applies to maxima of blocks of m background observations, so we effectively take

$$1 - p = G^{N_p/m}(x_p), \quad (14)$$

which yields

$$x_p = \mu + \frac{\sigma}{\xi} \left[\{-m \log(1 - p)/N_p\}^{-\xi} - 1 \right]. \quad (15)$$

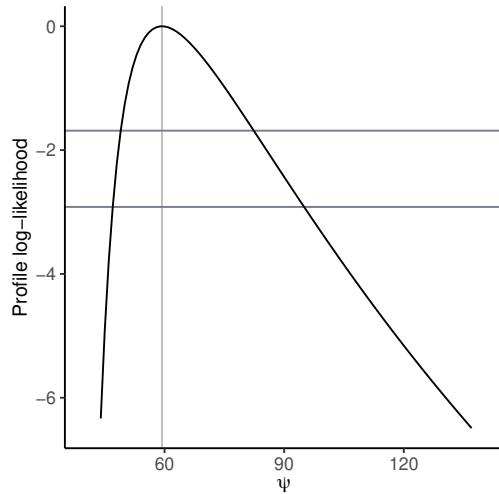
- Both formulae are replaced by their limits as $\xi \rightarrow 0$ for the Gumbel or exponential fits.
- Point estimates of both are obtained by using the fitted parameter values.

<http://stat.epfl.ch>

slide 102

Profile log-likelihood

- Here ψ is the 100-year return value for daily precipitation at Abisko based on the GEV fit.
- The strong asymmetry means that symmetric confidence intervals could be very misleading.

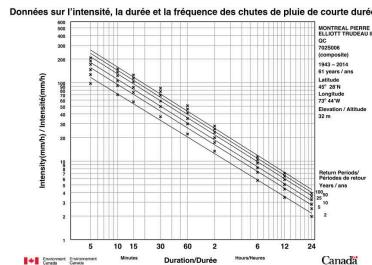


<http://stat.epfl.ch>

slide 103

Return levels and return periods III

- In hydrology, an **intensity-duration-frequency (IDF)** curve describes the relationship between rainfall intensity, duration, and a given return period and is used for flood risk assessment and water management.
- For each duration D , the frequency and magnitude of extreme rainfall events are estimated.
- Relying on the GEV applied to the series of annual maxima, estimates of x_p , the T -year return level, are produced. For comparison purposes, we work with $I = x_p/D$.
- The Gumbel distribution is usually used for convenience but more general approaches have recently been proposed.



IDF curves for Montréal airport. Source: Environment and Climate Change Canada (ECCC)

<http://stat.epfl.ch>

slide 104

Other measures of risk

- In environmental applications it may be important to estimate amounts of rain falling into an entire catchment area, or the length and impact of a heatwave, or ...
- The Basel Accords regulate measures of risk to be used by financial institutions:
 - the **Value at Risk** VaR_p is another name for a quantile/return level x_p ;
 - the **Expected Shortfall** is defined as the expected loss conditional on VaR_p being exceeded,

$$E(X - \text{VaR}_p \mid X > \text{VaR}_p),$$

where in both cases X represents a potential loss.

- More sophisticated measures such as **expectiles** are also used.

<http://stat.epfl.ch>

slide 105

Comments

- The T -year return level is often called ‘the level exceeded once on average every T years’, and is easily misinterpreted:
 - ‘on average’ does not mean that disasters arise at regular T -year intervals!
 - selection is often discounted — if M independent time series are monitored, then we expect M/T T -year events each year;
 - the assumption of stationarity is rarely true, so large events may cluster together in periods of elevated risk.
- Preferable to refer to quantiles — but probably impossible to change a cultural icon!
- Return levels and return periods are parameters of distributions, but future events are as-yet unobserved random variables, and it may be useful to consider their distributions. The distribution of the largest value X_T to be observed over T blocks of future background observations is $G^T(y)$, and it may be better to use this for risk analysis, in a Bayesian approach (later, probably).