3 Statistics of Extremes slide 67

3.1 Introduction slide 68
Basic ideas
[J Section 2.3 described models for extremes in which background data x1, ..., z,,, are treated as
a realisation of X7,..., X, i)
O This is highly idealised, since in applications
— the models are asymptotic, but the data are finite, so there may be bias;
— data are very often not identically distributed, owing to seasonality, trend or dependence on
external factors;
— data are typically dependent, owing to short-term persistence of extreme conditions;
— there may be other complications, e.g., selection of data because they are extreme or missing
data or ...
[0 Despite this the extremal paradigm, i.e., fitting asymptotic models to finite-sample data, is
widely used, and is the basis of extremal analysis.
http://stat.epfl.ch slide 69
Minima
O In general discussion we consider maxima and large values — what about minima and small
values?
O As
Y =min(Xy,..., X)) = —max(—Xy,...,— X)) ==Y,
say, we see that if we apply the arguments of §2.3 to —X, then
Gly) ~P(Y <y) =P~ 2 —y)=1-G(-y),
where G is the GEV approximation for max(—Xj,..., —X,,). Hence
Gy; 7, 7,€) = 1 = G(~y; —n,7,€),
where G is estimated from the negative minima.
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Estimation

[l Mostly we use maximum likelihood estimation according to the recipe on slide 24.
[0 This has theoretical and practical advantages:

— it is efficient (has the smallest possible variance) in large samples — in regular situations
(more later);

— likelihood ratio tests are generally fairly powerful;

— there's a simple recipe to follow — write down the likelihood and maximise it — which works
in many situations;

— lots of code already exists and can be readily applied. Hooray!
[0 Other methods of estimation are also used:
— method of moments estimation to get initial values for maximising a likelihood;
— probability-weighted (or L-) moments estimation is widely used in hydrology and some other
domains, because it can beat ML estimation in small samples;
— in more complex problems the likelihood can be awkward, and then other methods must be
used.
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Moment estimation

[0 Define moments for random variable X as p. = E(X") for r = 1,... (if u.. finite).

O If X depends on p x 1 parameter vector 6, then ). = p/(6), and we estimate 6 by solving the
equations

//T(G):n_lzX;, r=1,...,p.
J

[0 Moment estimators usually simple but inefficient (variance larger than for competing approaches)

[0 For GEV, . exists only if £&r < 1, so must have £ < 1/3 to estimate all three parameters, and
¢ < 1/6 for them to have finite variances. Much too restrictive for use in practice.

O Useful for finding starting-values for ML estimation.
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L-moment estimation
O Define probability-weighted moments as ;. , = E[X"F(X)*{1 — F(X)}'] for

r,s,t =0,1,2,..., or equivalently

1
TES / app(1 —p)'dp, where F(xp) = p;
0

ordinary moments have s =t = 0.
O Use Bs = pj 50 for s =0,1,... to fit GEV and GPD.
[0 In practice estimate the L-moments, \; = 5y, Ao =281 — By, ..., by

~ 1 « ~ 1 —([[/j—-1 n—j
M= ) Xy =g Z{( 1 > - ( 1 >}X<j>7
(1) j=1 (2) j=1

[0 L-moment estimators of 7, 7 and £ based on Xl, 3\\2 and /A\g are linear in the observations, so are

more robust than the ordinary moment estimators.
[0 Have good small-sample properties, but don't generalise to complex settings.
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Plan
0 Now discuss

— basic models,

— exploratory methods,

— fitting and interpretation and

— model checking

for basic models for maxima and for threshold exceedances.
[0 Then discuss targets of inference — measures of risk — and practical complications.
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3.2 Basic Methods for Maxima slide 75

Extremal Types Theorem

Theorem 15 (Extremal types) Let M = max(Xy,...,X,,) be the maximum of a random sample
Xi,...,Xm. If sequences of real numbers {a,} > 0 and {by,} can be chosen so that the centred and
scaled sample maximum, Y, = (M — b,,)/a,,, has a non-degenerate limiting distribution G, then this
must be the generalized extreme-value distribution (GEV),

—-1/¢
G(y)_{exp[—{us(y—n)/fh Joer0 g )

exp [—exp{—(y —n)/T}], £=0,

where a = max(a,0) for any real a, and with £, € R and 7 > 0. Put another way, Yy, Zyv~a
as m — oo, giving the ‘finite-m’ approximation P(Y,, <y) =~ G(y).

O  The ‘types’, which arise for £ =0, £ > 0 and £ < 0, are now usually subsumed into (11), and are
discussed below.

[0 This theorem provides a single distribution for maxima, and is in some ways stronger than the
Central Limit Theorem, since we only assume that linear rescaling can result in a non-degenerate
distribution, without other assumptions on F'.

[0 This is a natural model for maxima (and minima by using 1 — G(—v)).
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Examples

Example 16 Find sequences {a,,} and {b,,} such that maxima of independent variables from the
(a) uniform, (b) exponential, and (c) Pareto distributions have non-degenerate limiting distributions.

e < ]
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© ©
S 7 [ShN
w w
o o
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g g
o o
o o
Sh [Sh
< < ]
o o
T T T T T T 1 T T T T T T 1
0 2 4 6 8 10 12 -4 -2 0 2 4 6 8
X X

Distributions of maxima (left) and renormalized maxima (right) of m =1, 7, 30, 365, 3650 standard
exponential variables (from left to right), with limiting Gumbel distribution (heavy).
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Note | to Example 16
0 Note that
P{(M —bp)/am <y} = P{M < by + any} = F"(by + amy),
and we need to choose a,, and b, such that this has a limit as m — co. We saw from
Theorem 14 that a limit G(y) = exp{—A(y)}, so it is equivalent to identify A.
O (a) In the uniform case, F(xz) = x for x € [0,1]. Provided 0 < by, + a;,y < 1, we therefore have
F(bm + amy>m = (bm + amy)ma
so if we set b, =1, a;,, = 1/m and —m < y < 0, we have (b, + any)™ — €Y. Hence
-Y Y S 07
Aly) =
0, y >0,
i.e., A(y) = (—y)+. Clearly A is decreasing on (—o0,0). Hence
e/, y<0,
G(y) = exp{—A =
(y) = exp{—A(y)} {1’ ) >0,
which is the distribution function of —W, where W ~ exp(1). It is straightforward to check that
this G is (11) withn =1, 7 =1and { = —1.
0 (b) In the exponential case, F'(x) = 1 — exp(—x) for x > 0. Provided b, + ap,y > 0,
F(bm + amy)™ = [1 — exp {—(bm + amy)}"™ ,
so if we set b, =logm and a,, = 1, and if y > —logm,
. e e Y\ Ly
which is (11) with n =0, 7 = 1 and £ = 0. Here A(y) = e~ ¥ with support in R.
O (c) In the Pareto case, F'(z) =1— 2% for z > 1 and o > 0. Provided b, + a,ny > 1, we have
F(bm + amy)m = {1 - (bm + amy)ia}m
so if we set b,,, =0 and a,, = mY/® and if y > m_l/o‘, we have
y\"
G(y) = lim F(by + any)™ = lim (1 — —> =exp(—y~*), y=>0,
m—oo m—oo m
which is (11) with =1, 7 =1/a and £ = 1/a. In this case
o0, y=0,
A(y) :{ N
y ¢ y>0.
[0 Note that we have not shown that the three limits above are the only ones possible, just that we
can choose a,, and b,, to obtain these limits.
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GEV and ‘three types’

Gumbel, Frechet, Weibull

PDF
02 03 04 05

0.1

0.0

T T T T
-5 0 5 10

[0 £ is a shape parameter determining the rate of tail decay, with:
— £ > 0 giving the heavy-tailed Fréchet (Type Il) density with support (n — 7/&, 00);
— £ =0 giving the light-tailed Gumbel (Type 1) density, with support R;
— £ < 0 giving the short-tailed (reverse) Weibull (Type Il1) density, with support
(—o0,n —7/§).
O The usual Weibull distribution gives a model for minima.

0 7 and 7 are location and scale parameters (not so crucial as the shape parameter &).

http://stat.epfl.ch
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Properties of the GEV
0 Support: If £ >0thenY >n—7/& and if { <0then Y <n—71/¢.

€ < 1/2, etc. In applications (particularly in finance) some moments may not exist.

G(yp) =1 — p (next slide) — so y,, is the (1 — p) quantile (careful!)
O Maximum likelihood estimation: is regular only if £ > —1/2. Not usually a problem in
applications.

[0 Max-stability: if Y7,. g

.., Yr ~ GEV(n, 7,€) then max(Y7,...

G(y;n, 7, 8" = Gly;nr, mr, ér)

where

T = TTE,

n+rlogT, £=0, r=25

so the distribution type and shape parameter are unchanged by taking maxima.

_ {n+r<TE —1)/¢, €40,
nr =

[0 In fact the GEV is the only max-stable class of distributions.

0 Moments: E(Y") exists only if £ < 1/r, so the mean exists only if £ < 1, the variance only if

O Quantiles: solve G(y) = p for 0 < p < 1, but usually we use the return levels given by solving

,YT> ~ GEV(’I]T,TT,gT), i.e

http://stat.epfl.ch
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Quantiles and return levels

[0 Define the return level associated to the return period "= 1/p (blocks) as

_ _ —£ _
= AP

0<p<l,

i.e., the solution to G(yp) =1—-p=1—-1/T.
O Informally, y, is the level expected to be exceeded once every T' blocks.

[0 The plot below compares the quantiles for £ = —0.2 (blue) and £ = 0.2 (red) with the Gumbel
quantiles (black).

GEV quantile

~log(-log(1-p))
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Statistical approach

[0 Assume background data 1, x9,... are |ID realisations from some continuous distribution F' to

which the GEV approximation applies.
[0 Take maxima y = max(x1,...,Z,,) of blocks of size m from the background data.

— for environmental time series, typically m = 365 for annual maxima, m = 30 for monthly
maxima, ...

— in finance, typically m = 250 for annual maxima, m = 20 for monthly maxima, ...

O
g

Suppose the resulting series of maxima y, ...

,yn are lID GEV(n, T,§).

Fit the GEV by maximum likelihood estimation and use the fitted model for inferences.

http://stat.epfl.ch
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Exploratory plot for maxima

[0 Plot ordered block maxima yy < --- < ¥y, against Gumbel plotting positions
(1 (n)

—log[—log{j/(n+1)}], j=1,...,n.

O After allowing for noise,
— convex shape suggests £ > 0,
— straight line suggests £ ~ 0,
— concave shape suggests £ < 0.
[0 OQutliers, heavy rounding or other issues with data should be visible.

[0 Comparison of these plots for different block sizes may also suggest a minimum block size for the
GEV to apply.
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Abisko daily rainfall data

B [+2]
o o

Precipitation (mm)

n
o

[0 Daily precipitation in Abisko, in northern Sweden, 1913-2014. The largest value is 61.9 mm, but
many values are zero and most of the positive values are quite small.

2000

http://stat.epfl.ch
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Abisko block maxima

ten years.

Ordered maxima (mm)

60

N
o

n
o

0.0 2.5 5.0 7.5
Gumbel plotting positions

0  Gumbel QQplot of maxima for blocks of lengths (from bottom) one month and one, two, five and

http://stat.epfl.ch
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Abisko annual maxima

0 QQplot suggests stability from one year onwards, with slight convexity, so let's fit the GEV to
annual maxima:

library(evd)
(fit <- fgev(year.max))

Call: fgev(x = year.max)
Deviance: 691.9509

Estimates
loc scale shape
20.40530 5.84596  0.08353

Standard Errors
loc scale shape
0.64854 0.48317 0.07193

Optimization Information
Convergence: successful
Function Evaluations: 27
Gradient Evaluations: 7
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Abisko annual maxima

[0 Let's check the fit using plot (fit):

Probability Plot Quantile Plot

80
1

Empirical
40 60

Model
0.0 0.2 04 06 08 1.0

20

T T T T T
00 02 04 06 08 1.0 20 30 40 50
Empirical Model

Density Plot Return Level Plot

Return Level
B‘O 80

40

20

T T T T T T _T._1
10 20 30 40 50 60 02 05 20 50 20.0 100.0
Quantile Return Period
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Commentary

~

[0 These (horrible!) plots use the fitted GEV CDF G= G(1,7,€) and are the
1,...,

— probability plot showing {(]/(n + 1),é(y(j))) 1] =
line of unit gradient if Gisa good fit;

n} which should be a straight

— quantile plot showing {(@*1{]/(71 +Dhygy) i i=1,... ,n}, which should be a straight
line of unit gradient if Gisa good fit;

— return level plot showing (solid line) (—log(1 —p),é‘l(l —p)), for 0 <p <1, and the
points {(—log{j/(n +Dhyg))i=1,... ,n}, which should lie on the line if G is a good fit;

— density plot showing a kernel density estimate based on yi,...,y, (shown by the rug) and
the fitted GEV density.

[0 Some of the plots have pointwise 95% limits for individual points.

[0 They show essentially the same information but on different scales to highlight different aspects
of the fit.

O In this case the fit seems reasonable.
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3.3 Basic Methods for Exceedances slide 88

Basic ideas

00 Background data z, ...,y comprise tg blocks each of m observations.

[0 Model the exceedances over some threshold u by a Poisson process with measure

p{(t',t) x [x,00)} = (t —t)A(x), 0<t <t<ty, z>u,

Alz) = <1 +elo ”)1/5.

T /4

where

[0 This implies that the times of exceedances are a Poisson process of rate p,, = A(u) in (0,%p) and
the exceedance sizes are IID with GP distribution

PX;—u<z|X; >u)=1—(1+§$/0u>11/§>

where o, = 7+ &(u — n).
[0 This yields two fitting approaches:
— estimate n, 7 and £ directly by fitting the Poisson process likelihood,;
— estimate o, and & from the exceedances and p, from the number of exceedances, n,.

[0 The second, peaks over thresholds (POT), approach is most used in practice, as it's easier to
explain and understand, but both fits are equivalent.
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Exceedance Theorem

Theorem 17 (Exceedance) Let X be a random variable having distribution function F', and
suppose that a function ¢, can be chosen so that the limiting distribution of (X — u)/c,, conditional
on X > u, is non-degenerate as u approaches the upper support value x* = sup{z : F(z) < 1} of X.
If such a limiting distribution exists, it must be of generalized Pareto form, i.e.,

—-1/¢
1—exp(—x/0), 6207

where £ € R and o > 0. Expression (12) is the generalized Pareto distribution (GPD).

[0 There is a close connection with the extremal types theorem, which applies for maxima under the
same conditions as the exceedance theorem applies for exceedances, and with the same &.

[0 The GPD is a natural model for exceedances over high thresholds (and under low ones, using
1 — H(—x)).

Example 18 Find a limiting distribution for threshold exceedances for Z ~ N(0,1). Recall that
1—®(2) ~¢(2)/z as z — .
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Note to Example 18
[0 Here 2* = oo and for large z we have 1 — ®(z) ~ ¢(z)/z.
O By analogy with renormalising maxima we aim to find a function ¢, > 0 such that

lim P{(Z —u)/cy, > | Z > u}

U—00

is non-degenerate. The hint gives that for fixed z > 0 and large u,
P(Z > u+ cyx)
P(Z > u)
1—®(u+cyz)
1—®(u)
d(u~+ cyx)/(u+ cyx)
o) u

u
= uien exp{u?/2 — (u+ c,x)?/2}

P{(Z —u)/cy >z | Z > u}

= TTe/a exp(—cyur — c2z?/2),

so if we choose ¢, = 1/u then the ratio tends to unity and the exponent tends to —z, i.e., the
limiting distribution for an appropriately rescaled exceedance is standard uniform.

O If we had chosen ¢, = 1/(ou) for any fixed o > 0 we would have an exponential limit, with mean
o, as in (12), so we can think of the parameter o as arising because we don’t know the ideal
scaling function.
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Generalized Pareto distribution

0.6 0.8 1.0

PDF
0.4
PDF

, e

T T T T T T T T T T T T
0 2 4 6 8 10 0.0 0.2 0.4 0.6 0.8 1.0
X X

[0 A flexible distribution whose density can take a variety of shapes.

[0 Left: exponential density (¢ = 0, black), heavy-tailed density ({ = 0.5, red) and light-tailed
density (£ = —0.2, blue, with upper terminal shown); all have o = 1.

0.2

0.0

[l Right: densities with negative shape parameter and upper terminal at z = 1, with £ = —1
(black), £ = —2 (red), £ = —0.5 (blue) and £ = —0.8 (green).
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Stability and threshold choice

[l Both approaches require a threshold u to be chosen. Note that
— the Poisson process parameters should be stable above an appropriate threshold w,

— u too low will lead to bias (model inappropriate) and u too high will increase variance (too
few exceedances).
[0 If the Poisson process model is stable above upi,, then estimates of 1, 7 and £ should be similar
for u > umin, but will become more variable for higher w.

O If X ~GPD(o,¢), then X —u | X > u~ GPD(0 + £u,§), and this implies that

EX—-u|X>u)= J+§£u, £<1,
so a mean excess plot (or mean residual life plot) of
25 —uw)l(z; > u) .
against

Zjl(xj >u)

should be approximately straight with slope £/(1 — £) above ;.

[0 Can also test for equal shape parameters above u (Northrop—Coleman test).
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[0 All panels suggest that

Abisko threshold analysis
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Umin IS reasonable.
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Exploratory plot

[0  The natural plot here is of ordered exceedances against exponential plotting positions:

S o -
R o
o 1 2 s s s s
Exponential plotting position
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GPD fit

Deviance: 2828.05

Threshold: 10
Number Above: 499
Proportion Above: 0.033

Estimates
scale shape
5.83261 0.07025

Standard Errors
scale shape
0.39483 0.05088

Optimization Information
Convergence: successful
Function Evaluations: 16
Gradient Evaluations: 6

(fit.gpd <- fpot(abisko$precip,threshold=10))

http://stat.epfl.ch slide 95
Abisko POT fit
O Let's check the fit using plot(fit.gpd):
Probability Plot Quantile Plot
1] 4
So &
//
o s
Oio‘o 02 04 06 08 10 2 3 4 50
Empirical Model
Density Plot Return Level Plot
ci!‘o 20 ;“DWHA‘!‘ ‘5“0 65‘ 0002 0010 0050 0200 ' 1000
Quantile Return Period
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Poisson process fit

(fit.pp <- fpot(abisko$precip, threshold=10, model="pp"
start=1ist(loc=20,scale=6.5,shape=0.01)))
# needs initial values and number of points/block

Deviance: 2241.606
Threshold: 10

Number Above: 499
Proportion Above: 0.0134

Estimates

loc scale shape
19.79658 6.52110 0.07026
Standard Errors

loc scale shape

0.55697 0.37895 0.05088

Optimization Information
Convergence: successful

Function Evaluations: 20 Gradient Evaluations:

, npp=365.25,

8
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Abisko Poisson process fit
O Let's check the fit using plot(fit.pp):
Probability Plot Quantile Plot
57 y /'! 387 X
T e
OiO‘O 0‘.2 0‘.4 0‘.6 0.‘8 I.‘O 1‘0 2‘0 3‘0 4‘0 5‘0
Empirical Model
Density Plot Return Level Plot
07‘\0 2‘0 ZI;“D“IHJOH ‘ 5“0 65‘ 00‘02 ! D.O‘!D ! 0.0‘50 ! 0.2‘00 ! 1(;00
Quantile Return Period
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Summary

[0 The three fits agree fairly well:
~  Maxima: 7 = 20.49 649, 7 = 5.849.483, £ = 0.08,072;
— Poisson process: 7 = 19.8¢.556, T = 6.520.379, E: 0.070.051;
— POT: p, = 0.033, G = 5.830.304, & = 0.070.051.

[0 The location and scale parameters are estimated quite well, but the shape much less well.

[0 The shape parameter estimate is slightly positive, but not significantly so (some hydrologists
claim that rainfall has £ ~ 0.1 ...).

[0 The fit appears to be good.

[0 In applications one would need to check that the threshold fits are robust to the choice of u
(above umin ).

[0 It is tempting to fit the model with £ = 0, which will give much smaller standard errors for the
other parameters. But as we do not know that & = 0, this reduction in uncertainty may be
unrealistic, and it may introduce bias in extrapolation.
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3.4 Targets of Inference slide 100

Return levels and return periods
[ In basic analyses, typically aim to estimate risk measures such as
P(X >z), x,=F;'(1-p),

where X is a background observation and x and z,, are larger than any data,

— e.g., legal requirement for nuclear installations to estimate the highest windspeed in 7' = 107
years, so if there are daily data, then p = 1/(365.25T).

O =z, is a T-year return level with a return period of 1/p observations or T years.

[0 The return level solves the equation
FNp(xp) =1-p,

where N, is the number of background observations in the return period.
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Return levels and return periods Il

O Solving

for the POT model gives

—£
1= (1= p)VN
mp:u—k% {%} 1|, =z, >u, (13)

where p,, is the probability that a single background observation exceeds wu.

[0 The GEV applies to maxima of blocks of m background observations, so we effectively take

1—p=GNe/™(g), (14)
which yields
=ntg [{=mlog(1 = p)/N,} € —1]. (15)

[0 Both formulae are replaced by their limits as & — 0 for the Gumbel or exponential fits.

[0 Point estimates of both are obtained by using the fitted parameter values.
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Profile log-likelihood
O Here v is the 100-year return value for daily precipitation at Abisko based on the GEV fit.

[0 The strong asymmetry means that symmetric confidence intervals could be very misleading.
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Return levels and return periods Il

[0 In hydrology, an intensity-duration-frequency (IDF) curve describes the relationship between
rainfall intensity, duration, and a given return period and is used for flood risk assessment and

water management.

[0 For each duration D, the frequency and magnitude of extreme rainfall events are estimated.

[0 Relying on the GEV applied to the series of annual maxima, estimates of x,, the T-year return
level, are produced. For comparison purposes, we work with I = z,/D.

[0 The Gumbel distribution is usually used for convenience but more general approaches have
recently been proposed.

Données sur I'intensité, la durée et la fréquence des chutes de pluie de courte durée

g g8

s seass

Intensity(mm/h) / Intensité(mm/h)

Bol g e Duration/Durée  FoHeses Canadit

IDF curves for Montréal airport. Source: Environment and Climate Change Canada (ECCC)
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Other measures of risk

[0 In environmental applications it may be important to estimate amounts of rain falling into an
entire catchment area, or the length and impact of a heatwave, or ...

[0 The Basel Accords regulate measures of risk to be used by financial institutions:
— the Value at Risk VaR, is another name for a quantile/return level Tp;
— the Expected Shortfall is defined as the expected loss conditional on VaR,, being exceeded,

E(X —VaR, | X > VaR,),

where in both cases X represents a potential loss.

— More sophisticated measures such as expectiles are also used.
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Comments

[0 The T-year return level is often called ‘the level exceeded once on average every T years', and is
easily misinterpreted:
— ‘on average' does not mean that disasters arise at regular T-year intervals!

— selection is often discounted — if M independent time series are monitored, then we expect
M/T T-year events each year;

— the assumption of stationarity is rarely true, so large events may cluster together in periods of
elevated risk.

[0 Preferable to refer to quantiles — but probably impossible to change a cultural icon!

[0 Return levels and return periods are parameters of distributions, but future events are as-yet
unobserved random variables, and it may be useful to consider their distributions. The distribution
of the largest value X7 to be observed over T blocks of future background observations is G7 (y),
and it may be better to use this for risk analysis, in a Bayesian approach (later, probably).
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